On distributionally robust extreme value analysis
نویسندگان
چکیده
منابع مشابه
Robust Fusion: Extreme Value Theory
Recognition problems in computer vision often benefit from 5 5 a fusion of different algorithms and/or sensors, with score level fusion be6 6 ing among the most widely used fusion approaches. Score level fusion re7 7 quires the different data to be normalized before combining. Choosing an 8 8 appropriate score normalization technique before fusion is a fundamen9 9 tally difficult problem becaus...
متن کاملDistributionally robust discrete optimization with Entropic Value-at-Risk
We study the discrete optimization problem under the distributionally robustframework. We optimize the Entropic Value-at-Risk, which is a coherentrisk measure and is also known as Bernstein approximation for the chanceconstraint. We propose an efficient approximation algorithm to resolve theproblem via solving a sequence of nominal problems. The computationalresults show...
متن کاملDistributionally Robust Stochastic Programming
Abstract. In this paper we study distributionally robust stochastic programming in a setting 7 where there is a specified reference probability measure and the uncertainty set of probability mea8 sures consists of measures in some sense close to the reference measure. We discuss law invariance of 9 the associated worst case functional and consider two basic constructions of such uncertainty set...
متن کاملDistributionally Robust Logistic Regression
This paper proposes a distributionally robust approach to logistic regression. We use the Wasserstein distance to construct a ball in the space of probability distributions centered at the uniform distribution on the training samples. If the radius of this ball is chosen judiciously, we can guarantee that it contains the unknown datagenerating distribution with high confidence. We then formulat...
متن کاملDistributionally Robust Submodular Maximization
Submodular functions have applications throughout machine learning, but in many settings, we do not have direct access to the underlying function f . We focus on stochastic functions that are given as an expectation of functions over a distribution P . In practice, we often have only a limited set of samples fi from P . The standard approach indirectly optimizes f by maximizing the sum of fi. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Extremes
سال: 2020
ISSN: 1386-1999,1572-915X
DOI: 10.1007/s10687-019-00371-1